手机浏览器扫描二维码访问
“从零开始,没有任何可以借鉴的资料,而且时限……只有两个月!”
菲涅尔教授继续说道,“我不会说什么加油激励的话,只希望你们两个不要忘记来这的目的,想要退出,我随时欢迎。”
“多余的话说道这里,现在我们来谈谈课题的事情。”
菲涅尔教授让两人找位置坐下,搬过来一台笔记本电脑,打开一份ppt,指着道,“这是我做的一个简短的课题研究流程。”
“这个项目,我做主导,你们两个的任务就是辅助我,解决一些难度不算大的环节。”
程诺和赫尔点点头,表示知道。
以他们两个的能力,还不足以撑起这个项目的框架。
菲涅尔教授继续做着讲解,“这个项目的拟定名称,叫做黎曼流形上fritzjohn必要最优性条件。那就首先要明白,何谓黎曼流形,何谓fritzjohn必要最优性条件!”
“黎曼流形这个概念不用说,而fritzjohn必要最优性条件对你们来说应该比较陌生。”他先把目光望向程诺,“程诺,你了解这个概念吗?”
程诺不假思索的回答,“所谓的fritzjohn必要最优性条件,便是指f(x),st{g(x)≤0,h(x)=0,x∈的必要最优性条件。”
“不错,这就是fritzjohn必要最优性条件。你们也看出来了,这个fritzjohn必要最优性条件如果直接去研究的话,不仅变量极多,函数方程不好定义之外,还存在推导过程中公式复杂的问题。”
“也因此,我们需要转换一下思路。”
菲涅尔教授翻到下一页ppt,上面只写着一行公式:
f:→r,g:→rl,h:→rn
程诺扫了一眼,恍然大悟一声,“lipschitz函数?!”
菲涅尔教授瞥了一眼程诺,目光带着一丝赞赏,“准确的说,是局部lipschitz函数!”
lipschitz函数,是指若f(x)在区间i上满足对定义域d的任意两个不同的实数x1、x2均有:∥f(x1)-f(x2)∥≈ap;lt;=k∥x1-x2∥成立,必定有f(x)在区间i上一致连续
程诺心中,已经大概明白了这个项目菲涅尔教授的破题点是什么了。
菲涅尔教授继续他的理论讲解,“在这个公式中,我们可以把当做一个维的黎曼流形。”
“艾顿可的那篇关于hilbert空间中p问题的论文,你们两个都应该有读到过吧?”
两人同时点头。
“那就好了,类比一下,我们就可以把p问题从线性的空间扩展到微分流形上,而微分流形又是非光滑的,那么我们就可以有如下的框架构建。”
下一张ppt展示在两人面前。
“第一步,在黎曼流形上建立非光滑分析工具,即在流形上定义广义方向导数和广义梯度。”
“第二步,讨论广义梯度的性质。”
“第三步,在前两步的基础上,讨论黎曼流形上问题(p)的fritzjohn型最优性条件.”
“第四步,……”
框架早已被菲涅尔教授搭建好。
而程诺在看到那一条条井然有序的过程步骤,有一种醍醐灌顶的感觉。
原来,这个项目,应该这样去做!
海贼:无限极品抽奖 我有一座英雄联盟学院 我!万古最强天骄 洪荒二郎传 盛唐风月 我公子扶苏,请始皇退位! 王者立海大 神话:在青蛇中修炼遮天法 谁还没个后台 不朽神王 快穿之宿主她总翻车 天生就会跑 魔鬼的惩罚 他的小祖宗爱吃糖 超神术士 身为学长的我被六傲娇少女捉弄 美漫之阿斯加德的战神 人在木叶,慌得一批 史上第一帅神 漫威世界的御主
打你是看得起你!不打你是对不起你!要你命是帮你投胎不排队!爱你才会什么都给你!这是一个强者归来,嚣张跋扈的故事!...
一纸契约,一夜又一夜,她将自己交给戴着面具的金主。乖女孩,你只要放松,剩下的交给我即可。男人的手抚上了康雨霏的唇,低沉的嗓音让她颤抖,却无法逃脱。一年后,她产下一对双胞胎,费尽心计的避开对方,只如果您喜欢萌宝来袭总裁爹地有点坏,别忘记分享给朋友...
林政穿越成小说中大离王朝反派皇帝。小说中他的结局已经注定,会被小说主角以‘吃他娘,喝他娘,打开城门迎周王,周王来了不纳粮’之名,活活吊死。林政自然不会坐以待毙。看着这权臣当道,匪寇横行,民不聊生,妖魔出世的朝代,林政只好提起了屠刀朕要雄霸天下!如果您喜欢朕要雄霸天下,别忘记分享给朋友...
噗呲!一柄尖锐的苦无,刺穿了上杉彻的心脏。敌人带着对我的仇恨,死吧!十分钟后。上杉彻敌人你怎么还不死?上杉彻没办法,死不了。一拳捶爆了敌人的脑袋,上杉彻面无表情地将插在胸口的苦无拔了出来。苟是不可能苟的。既然死不了,那就往死里浪。如果您喜欢木叶我被诅咒了不死之身,别忘记分享给朋友...
不可抗拒的外力强制地球进入大宇宙时代。周哲带着神秘笔记本赐予的绝对领悟和自我设定天赋,开启了碾压诸天之旅!解析宇宙密码!破译超凡基因序列!揭晓硅基生命奥秘!搞事,搞事,搞事!老书魔改全世界从火影开始做主神已完本,量大管饱,新书求收藏求推荐!如果您喜欢碾压诸天,别忘记分享给朋友...
关于绝品风水师本是天煞孤星的王浩因偶得无名风水秘术,从此逆天改命,面对重重危机,且看王浩如何凭借风水相术从容应对。...