手机浏览器扫描二维码访问
他就像浩瀚大海的海绵,尽可能的汲取着知识的水分。
数学使人快乐。这句话说得果然不错。
在忧伤时,取出一本数学书,细细研读,必让人忘记忧愁。
在高兴时,还要取出一本数学书,慢慢品味,定会更加快乐!
程诺就处于这样一种状态,本来就心情不错的他,再读完三四本几何学方面的书籍后,心里更加美滋滋起来。
对面的察里一边看书,一边时不时的抬头观察程诺的脸色。
见到程诺那愈发上扬的嘴角,察里同学不由更加懵逼。
又过去一段时间,程诺一直看几何学方面的书也有些腻了,便随手将那本薄薄的《abc猜想的发展与近况》拿到身前。
之前对abc猜想的大名如雷贯耳,但从未认真研究过它的难度。
但公认的,除了如今还未得到解决的那千禧年七大猜想的六个之外,abc猜想可列第二梯队。
甚至比起那哥德巴赫猜想,单论难度,也要高上一个档次。
现在,程诺想真正体验一下。
翻开第一页,程诺大致浏览了一下目录。
果然,所有有关abc猜想的书籍,上田新一都是一个绕不过去的坎。而这本书中,大约三分之一的篇幅都和上田新一有关。
与数学猜想大家庭中的著名成员,如黎曼猜想、哥德巴赫猜想、孪生素数猜想,以及(已被证明了的)曾经的费马猜想等等相比,abc猜想的“资历”是很浅的,因为其它那些猜想都是百岁以上的“老前辈”。
这个猜想提出于1985年,当时名声并不显,但随着后人注意到该猜想的重要性后,才进入世界数学家的视野。
其实abc猜想的内容和哥德巴赫猜想一样,普通人理解起来并不困难:
abc猜想针对的是满足两个简单条件的正整数组(a,b,c)。其中第一个条件是a和b互素,第二个条件是a+b=c。
显然,满足这种条件的正整数组——比如(3,8,11)、(16,17,33)……——有无穷多个。为了引出abc猜想,以(3,8,11)为例,做一个“三步走”的简单计算:
1将a、b、c乘起来(结果是3x8x11=264);
2对乘积进行素数分解(结果是264=23x3x11);
3将素数分解中所有不同的素数乘起来(结果是2x3x11=66)。
现在,将a、b、c三个数字中较大的那个(即c)与步骤3的结果比较一下,便会发现后者大于前者。如果随便找一些其它例子,也很可能发现同样的结果。
但这并不是一个规律,存在的反例数不胜数,如(3,125,128)等,但将3的结果加上一个大于1的幂,那存在反例的数目便会由无限变得有限。
简单来说,abc猜想是一个允许存在反例的猜想。
因此,那种使用超算寻找反例证明猜想的办法,在这个难题上根本就不适用。
而看完题目后,程诺拿出一张草稿纸,在上面写写画画一阵。
半小时后,只能颓然一叹,“难啊!”
果然,这种世界级猜想,不是啥妖艳jian货就能上的。
这个猜想,果真是很有料!
没有头绪,没有任何头绪。
程诺没有看书中后面关于几位数学大佬对这个猜想的分析,他单独尝试了一波,却发现全线溃败。
他根本找不到任何的突破口,去攻克这个猜想。
难受啊!
史上第一帅神 不朽神王 快穿之宿主她总翻车 他的小祖宗爱吃糖 王者立海大 我公子扶苏,请始皇退位! 海贼:无限极品抽奖 我!万古最强天骄 美漫之阿斯加德的战神 魔鬼的惩罚 谁还没个后台 超神术士 天生就会跑 我有一座英雄联盟学院 盛唐风月 漫威世界的御主 人在木叶,慌得一批 神话:在青蛇中修炼遮天法 身为学长的我被六傲娇少女捉弄 洪荒二郎传
B格简介风暴般的长枪划破天际,亡灵与狼群追随其后。悠远的钟声与冷冽的死亡如影随形。听到那晚钟之声了么?它在宣告汝之死亡。直白简介一个由魔女,女术士,吸...
关于病态情深阮爷,又凶又猛!别动,替我生个孩子!宋晚薇被继母算计却送错了房间,她无力反抗,只好顺便坑了男人一千万。六年后,她带着小萌包归来复仇,却被当初的男人强势缠上了。阮先生,虽然我们...
见狂澜之树,挽大厦之将倾灵气复苏,万界争霸武道修仙异能,谁可纵横?一切,从一个小小的模拟器开始。巫师世界,仙侠世界,猎魔世界,诸神世界...
暧昧季节出品一个极其普通的小人物,经历了不普通的事件。从以游戏为娱乐,变成了以游戏为生存。苍茫到底是一个什么样的游戏,里面又充满了什么样的秘密。无...
圣旨到,江华接旨江华一脸茫然的看着眼前的圣旨,想着,迟到多年的金手指终于来了。虽然不是系统,但听起来很高大尚。于是,江华说了一句江华接旨!如果您喜欢圣旨驾到,别忘记分享给朋友...
当个神医很烦恼,当个无敌的神医更烦恼,因为病人太多,唐钰实在是应付不过来呀!...